DOUGLAS E. LATCH

Professor	206.296.2581
Seattle University	latchd@seattleu.edu

CURRENT APPOINTMENT

2018- **Professor of Chemistry**, Seattle University

Affiliate Professor of Civil and Environmental Engineering, University of Washington

EDUCATION AND PROFESSIONAL EXPERIENCE

2015-16	Guest Professor, Environmental Chemistry Group, Department of Environmental	
	Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH-Zür	
	(Swiss Federal Institute of Technology)	

- 2013-18 Associate Professor of Chemistry, Seattle University
- 2007-13 Assistant Professor of Chemistry, Seattle University
- 2005-07 Postdoctoral Associate, United States Geological Survey
 Proposal title: The role of photochemistry and dissolved natural organic matter in the cycling of mercury in aquatic systems
 - Advisor: Dr. George R. Aiken, Project Chief: Organic Carbon Migration
- 1999-2005 Ph.D. Chemistry, University of Minnesota, Minneapolis, MN
 Dissertation title: Environmental photochemistry: studies on the degradation of pharmaceutical pollutants and the microheterogeneous distribution of singlet oxygen
 - Advisor: Professor Kristopher McNeill
- 1998-99 Analytical Chemist, Part Three Corporation, Oakdale, MNPerformed quality assurance/quality control testing on pharmaceutical products

1994-98**B.A. Chemistry and Psychology,** Gustavus Adolphus College, St. Peter, MN

• Project title: Construction of a calorimeter for measuring enthalpies of reactions

PEER-REVIEWED PUBLICATIONS (UNDERGRADUATE STUDENTS <u>UNDERLINED</u>; * = CORRESPONDING AUTHOR)

- J. M. Buth*, R. Ossola, S. B. Partanen, K. McNeill, W. A. Arnold, M. O. O'Connor, D. E. Latch*. The Kinetics and Pathways of the Aqueous Photolysis of Pharmaceutical Pollutants: A Versatile Laboratory or Remote Learning Investigation. *Journal of Chemical Education*. **2021**, *98* (7), 2411-2418. (https://doi.org/10.1021/acs.jchemed.0c01398)
- S. B. Partanen, P. R. Erickson, D. E. Latch, K. J. Moor*, and K. McNeill*. Dissolved organic matter singlet oxygen quantum yields: Evaluation using time-resolved singlet oxygen phosphorescence. *Environmental Science and Technology*. **2020**, *54*, 3316-3324. (<u>https://doi.org/10.1021/acs.est.9b07246</u>)
- M. O. O'Connor, S. R. Helal, D. E. Latch, and W. A. Arnold*. Quantifying photo-production of triplet excited states and singlet oxygen from effluent organic matter. *Water Research.* 2019, 156, 23-33. (<u>https://doi.org/10.1016/j.watres.2019.03.002</u>)
- P. R. Erickson, K. J. Moor, J. J. Werner, D. E. Latch, W. A. Arnold, and K. McNeill*. Singlet oxygen phosphorescence as a probe for triplet-state dissolved organic matter reactivity. *Environmental Science and Technology*. **2018**, *52*, 9170–9178. (<u>http://dx.doi.org/10.1021/acs.est.8b02379</u>)
- G. McKay, J. A. Korak, P. R. Erickson, D. E. Latch, K. McNeill*, and F. L. Rosario-Ortiz*. The case against charge transfer interactions in dissolved organic matter photophysics. *Environmental Science and Technology.* **2018**, *52*, 406-414. (<u>http://dx.doi.org/10.1021/acs.est.7b03589</u>)

- 19. D. E. Latch*. The role of photochemistry in the transformation of pollutants in surface waters. In *Advanced Oxidation Processes for Water Treatment: Fundamentals and Applications.* IWA Publishing. **2017**, 535-580.
- E. Appiani, R. Ossola, D. E. Latch, P. R. Erickson*, and K. McNeill*. Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: Effect of temperature, pH, and salt content. *Environmental Science: Processes & Impacts.* 2017, *19*, 507-516. (<u>http://dx.doi.org/10.1039/c6em00646a</u>)
- W. A. Arnold*, <u>Y. Oueis</u>, M. O'Connor, <u>J. E. Rinaman</u>, <u>M. G. Taggart</u>, <u>R. E. McCarthy</u>, <u>K. A. Foster</u>, and D. E. Latch*. QSARs for phenols and phenolates: Oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants. *Environmental Science: Processes & Impacts.* **2017**, *19*, 324-338. (<u>http://dx.doi.org/10.1039/C6EM00580B</u>)
- C. Chu, P. R. Erickson, R. A. Lundeen, D. Stamatelatos, P. J. Alaimo, D. E. Latch, and K. McNeill*. Photochemical and non-photochemical transformations of cysteine with dissolved organic matter: Kinetics, pathways and products. *Environmental Science and Technology*. 2016, *50*, 6363-6373. (<u>http://dx.doi.org/10.1021/acs.est.6b01291</u>)
- 15. D. E. Latch*. The role of singlet oxygen in surface water photochemistry. In *Surface Water Photochemistry*. RSC Publishing. **2016**, 139-165. (<u>http://dx.doi.org/10.1039/9781782622154-00139</u>)
- D. B. King, J. E. Lewis, K. Anderson, D. E. Latch, R. Moog, S. Sutheimer, and G. Webster. Choosing appropriate models – incorporating climate change into general chemistry. In *Chemistry and the Environment: Pedagogical Models and Practices*. ACS Symposium Series, volume 1214, 2015, 1-15. (<u>http://dx.doi.org/10.1021/bk-2015-1214.ch001</u>)
- J. D. Jeremiason*, <u>J. C. Portner</u>, G. R. Aiken, <u>A. J. Hiranaka</u>, <u>M. T. Dvorak</u>, <u>K. T. Tran</u>, and D. E. Latch*. Photoreduction of Hg(II) and photodemethylation of methylmercury: The key role of thiol sites on dissolved organic matter. *Environmental Science: Processes & Impacts.* **2015**, *17*, 1892-1903. (<u>http://dx.doi.org/10.1039/C5EM00305A</u>)
- D. E. Latch*. Instrumental Analysis at Seattle University: Incorporating environmental chemistry and service learning into an upper-division laboratory course. In Service Learning and Environmental Chemistry. ACS Symposium Series, volume 1177, 2014, 193-207. (<u>http://dx.doi.org/10.1021/bk-2014-1177.ch011</u>)
- R. B. Young, D. E. Latch, D. B. Mawhinney, <u>T. H. Nguyen</u>, <u>J. C. C. Davis</u>, and T. Borch*. Direct photodegradation of androstenedione and testosterone in natural sunlight and its effect on endocrine disrupting potential. *Environmental Science and Technology*. **2013**, *47*, 8416-8424. (<u>http://dx.doi.org/10.1021/es401689j</u>)
- D. E. Latch*, W. L. Whitlow*, and P. J. Alaimo. Incorporating an environmental research project across three STEM courses: A collaboration between ecology, organic chemistry, and analytical chemistry students. In *Science Education and Civic Engagement: The Next Level*. ACS Symposium Series, volume 1121, **2012**, 17-30. (http://dx.doi.org/10.1021/bk-2012-1121.ch002)
- <u>C. M. Whidbey, K. E. Daumit, T. H. Nguyen, D. D. Ashworth, J. C. C. Davis</u>, and D. E. Latch*. Photochemical induced changes of *in vitro* estrogenic activity of steroid hormones. *Water Research*. 2012, 46, 5287-5296. (<u>http://dx.doi.org/10.1016/j.watres.2012.07.016</u>)
- J. R. Felcyn, J. C. C. Davis, L. H. Tran, J. C. Berude, and D. E. Latch*. Aquatic photochemistry of isoflavone phytoestrogens: Degradation kinetics and pathways. *Environmental Science and Technology*. 2012, *46*, 6698-6704. (<u>http://dx.doi.org/10.1021/es301205a</u>)
- M. Grandbois, D. E. Latch, and K. McNeill*. Microheterogeneous concentrations of singlet oxygen in natural organic matter isolate solutions. *Environmental Science and Technology*. 2008, 42, 9184-9190. (<u>http://dx.doi.org/10.1021/es8017094</u>)
- 6. D. E. Latch and K. McNeill*. Microheterogeneity of singlet oxygen distributions in irradiated humic acid solutions. *Science*. **2006**, *311*, 1743-1747. (<u>http://dx.doi.org/10.1126/science.1121636</u>)
- L. A. MacManus-Spencer, D. E. Latch, K. M. Kroncke, K. McNeill*. Stable dioxetane precursors as selective trap-and-trigger chemiluminescent probes for singlet oxygen. *Analytical Chemistry.* 2005, 77, 1200-1205. (<u>http://dx.doi.org/10.1021/ac048293s</u>)
- D. E. Latch, J. L. Packer, B. L. Stender, <u>J. VanOverbeke</u>, W. A. Arnold*, K. McNeill*. Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-*p*-dioxin and oligomerization products. *Environmental Toxicology and Chemistry*. **2005**, *24*, 517-525. (<u>http://dx.doi.org/10.1897/04-243R.1</u>)

- J. L. Packer, J. J. Werner, D. E. Latch, K. McNeill*, W. A. Arnold*. Photochemical fate of pharmaceuticals in the environment: naproxen, diclofenac, clofibric acid, and ibuprofen. *Aquatic Sciences.* 2003, 65, 1-10. *Special Issue on Photochemical Processes in the Hydrosphere.* (<u>http://dx.doi.org/10.1007/s00027-003-0671-8</u>)
- D. E. Latch, B. L. Stender, J. L. Packer, W. A. Arnold*, K. McNeill*. Photochemical fate of pharmaceuticals in the environment: cimetidine and ranitidine. *Environmental Science and Technology*. 2003, 37, 3342-3350. (<u>http://dx.doi.org/10.1021/es0340782</u>)
- D. E. Latch, J. L. Packer, W. A. Arnold, K. McNeill*. Photochemical conversion of triclosan to 2,8dichlorodibenzo-*p*-dioxin in aqueous solution. *Journal of Photochemistry and Photobiology, A: Chemistry*. 2003, 158, 63-66. (<u>http://dx.doi.org/10.1016/S1010-6030(03)00103-5</u>)

NON-REFEREED PUBLICATIONS (UNDERGRADUATE STUDENTS UNDERLINED)

 D. E. Latch*, <u>L. H. Tran</u>, <u>J. R. Felcyn</u>, P. Friel, A. E. Mack. Sensitive ESI-LC/MS/MS analysis of dansyl derivatized phytoestrogens on an Agilent ZORBAX Eclipse Plus C₁₈ 1.8 μm column. *Agilent Technologies Application Note*. **2010**. (<u>http://www.chem.agilent.com/Library/applications/5990-6372EN.pdf</u>)

RESEARCH GRANTS AND FUNDING

External Research Grants

National Science Foundation: Collaborative Research Grant	Latch portion: \$154,793
with W. A. Arnold (Univ. Minnesota)	summer 2014-summer 2018
Collaborative Research: Experimental and computational studies	of the role of effluent organic
matter in the sensitized transformation of organic contaminants	
Minnesota Department of Natural Resources Grant	\$5,000
For the dissemination of methylmercury photochemistry data	
Minnesota Department of Natural Resources Grant	\$90,000 (Latch portion: ~\$45,000)
with J. Jeremiason (PI, Gustavus Adolphus College) and G. R. Aik	en (USGS) February 2012
For the study of methylmercury in northern Minnesota lakes and w	vetlands
Summer Internship for Science Educators (summer 2010)	\$21,000
Environmental Health Research Experiences Program (through th	e University of Washington)
with W. L. Whitlow (PI)	
Urban aquatic chemistry, ecology & health: Comparing pyrethroid	concentrations, aquatic
conditions, benthic invertebrates and human health risks across a	Superfund site
Research Corporation: Cottrell College Science Awards (2008-10)	\$43,218
Exploring the persistence of estrogenic pollutants: the role of photo	ochemical degradation
mechanisms	
National Research Council Postdoctoral Associateship (2005-07)	\$110,000 + benefits
The role of photochemistry and dissolved natural organic matter in	the cycling of mercury in aquatic
systems	
Internal Awards	

Numerous internal awards supporting scholarship and undergraduate student collaborators.

Other Financial Support Obtained

ETH-Zürich, Sabbatical Funding (2015-16)	\$27,540
Gordon Research Conference Chair's Fund (summer 2008)	\$543
Travel funds awarded to young investigators at primarily undergraduate institutions	

PRESENTATIONS (BY DEL)

At least *forty-six* presentations, many of which were invited, at regional, national, or international meetings or other universities/scientific organizations.

PRESENTATIONS BY COLLABORATORS

At least *thirty* presentations at regional, national, or international meetings or other universities/scientific organizations.

EXTERNAL PRESENTATIONS BY UNDERGRADUATE RESEARCH STUDENTS

At least *thirty-five* presentations at regional and national meetings.

HONORS AND AWARDS

Outstanding Reviewer Award, Environmental Science: Processes & Impacts (Royal Society of Chemistry), 2017

Top Ten Reviewer Award, Environmental Science: Processes & Impacts (Royal Society of Chemistry), 2016

Seattle University Center for Environmental Justice and Sustainability Faculty Fellow, 2014-15 Seattle University Justice Faculty Fellow, 2010-11

Seattle University Academic Service-learning Faculty Fellow, 2009-10

Doctoral Dissertation Fellowship (2004-05), University of Minnesota Graduate School. Competitive award for outstanding achievement in graduate school

PROFESSIONAL MEMBERSHIPS

American Chemical Society (2001-)