
© Construx Software Builders, Inc. www.construx.com

How to Engineer Software

 2

Outline

v Software engineering
u  What does it mean, why should we care?

v Code automates “business”
v Semantic model of “business”
v Semantic model of automation technology
v Code is …
v And if that’s true …

© Construx Software Builders, Inc. www.construx.com

Software Engineering:
What does it mean,
Why should we care?

 4

Engineering

Source: Accreditation Board of Engineering and Technology (http://www.abet.org)

“… the profession in which a knowledge of the
mathematical and natural sciences gained by
study, experience, and practice is applied with

judgment to develop ways to utilize, economically,
the materials and forces of nature for the benefit

of mankind”

Engineering =
Scientific theory + Practice + Engineering economy

© Construx Software Builders, Inc. www.construx.com

 5

Software Engineering

“… the profession in which a knowledge of the
mathematical and computing sciences gained by
study, experience, and practice is applied with

judgment to develop ways to utilize, economically,
computing systems for the benefit of mankind”

Software engineering =
Computer science + Practice + Engineering economy

Source: Steve Tockey, Return on Software, Addison Wesley, 2005

 6

Why Software Engineering?

v 18% of SW projects fail to deliver any value
v Of projects that deliver, average

u  42% late
u  35% over budget
u  25% under scope

v Along with
u  Unhappy sponsors
u  Frustrated users
u  Team burn out

Source: Standish Group CHAOS Report 2013

© Construx Software Builders, Inc. www.construx.com

 7

Root Causes of Poor Performance

v Vague, ambiguous, incomplete requirements
v Syntax >> semantics
v Unmanaged complexity
v Over-dependence on testing
v  “Self-documenting code” is a myth

Note: Inadequate project management is also a cause, but is out of scope for this discussion

 8

Vague, Ambiguous,
Incomplete Requirements

“The system shall detect a ¼ inch defect in a pipe section”

“The main floor guest bathroom shall have a door.
That door shall be a right-hand door.

That right-hand door shall be oriented so the
hinges are on the South side of the door frame”

 “Left-hand door” “Right-hand door”

© Construx Software Builders, Inc. www.construx.com

 9

Syntax vs. Semantics

v  Example 1
u  “The sky is blue”
u  “天空是蓝⾊色的”
u  “하늘은 파란색 이다”

v  Example 2
u  “I give you this book”
u  “我给你这本书”
u  “나는 당신에게 책을 줍니다”

v  Example 3
u  “Colorless green dreams sleep furiously”

“Bug” == “Defect” == Semantic inconsistency

 10

Unmanaged Complexity

v  Syntactic complexity
u  Cyclomatic complexity
u  Depth of decision nesting
u  Number of parameters
u  Fan out
u  …

v  Semantic complexity
u  Poor abstraction
u  Weak or non-existent encapsulation
u  Low cohesion, high coupling
u  High technical debt
u  …

© Construx Software Builders, Inc. www.construx.com

 11

Cost of Defects

Requirements

Design

Construction

System test

Requirements

Design
Construction

Post-Release

Activity
in which defect
is introduced

Activity in which defect Is corrected

50 – 100X

Cost to
Correct

Source: Steve McConnell, Software Project Survival Guide, Microsoft Press, 1998

 12

Frequency of Defects

Requirements
56%Design

27%

Code
7%

Other
10%

Source: Gary Mogyorodi, “What is Requirements-Based Testing?”, Crosstalk, March, 2003

~83% of defects exist before that code is written

© Construx Software Builders, Inc. www.construx.com

 13

Rework Percentage (R%)

v  350-developer organization measured 57%
v  50-developer organization measured 59%
v  125-developer organization measured 63%
v  100-developer organization measured 65%
v  150-developer organization measured 67%

See: “How Healthy is Your Software Process?” white paper

“Rework is not only the single largest driver of cost
and schedule on a typical software project;

it is bigger than all other drivers combined!”

 14

Code Cannot be Self-documenting

v What is this code intended to do?
v Why does this code look the way it does?

u  Has to be vs. happens to be

© Construx Software Builders, Inc. www.construx.com

Code Automates
“Business”

 16

Example 1: Banking

v  Policies to enforce
u  What does it mean to be Bank Customer?
u  What does it mean to be Account?
u  Can Customer not have Account? Only one? Many?
u  Can Account not have Customer? Only one? Many?
u  What are valid states of Account?
u  What are valid balances of Account?
u  …

v  Processes to carry out
u  What does it mean to open Account?
u  What does it mean to deposit?
u  What does it mean to transfer?
u  What does it mean to withdraw?
u  What does it mean to close?
u  …

© Construx Software Builders, Inc. www.construx.com

 17

Example 2: TCP / IP

v  Policies to enforce
u  What does it mean to be TCP Port?
u  What does it mean to be TCP Connection?
u  Can Port not have Connection? Only one? Many?
u  Can Connection not have Port? Only one? Many?
u  What are valid states of TCP Connection?
u  What are valid IP Addresses for IP Datagram?
u  …

v  Processes to carry out
u  What does it mean to Ack Segment?
u  What does it mean to Window probe?
u  What does it mean to fragment IP Datagram?
u  What does it mean to reassemble IP Datagram?
u  What does it mean when Time to live = 0?
u  …

 18

Success Depends on …

For software developers to be successful at automating
someone’s business, those developers need to understand
 that business at least as well as—if not better than—the

business experts understand it

To the extent that business is being automated

*

*

© Construx Software Builders, Inc. www.construx.com

 19

Dreaded SMS Syndrome

Semantic Model of
“Business”

© Construx Software Builders, Inc. www.construx.com

 21

Use Case Diagram
A

1
2
3 B 4 5

Class Diagram

A B
X Y Z

. . .

Communication Diagram for 5

a:A x:X y:Y
5.1 5.2

Sequence Diagram for 1

z:Z b:B y:Y
1.1 1.2

Statechart for X Statechart for Y Statechart for Z

. . .

Semantic Model of “Business”

Process:
high level

Policy

Process:
intermediate level

Process:
detailed level

 22

JAL Model Editor: Policy

© Construx Software Builders, Inc. www.construx.com

 23

JAL Model Editor: Detailed Process

book order
book order line

 24

Avoid Requirements Defects

v  Unambiguous
u  Single interpretation derived from computer science, discrete math

v  Precise
u  Association multiplicities
u  Attribute ranges
u  Action preconditions, postconditions
u  Generalization completeness

v  Concise

v  Completeness guidelines
u  Categories of use cases
u  All events in all states

v  Checklists
v  Simulation

© Construx Software Builders, Inc. www.construx.com

Semantic Model of
Automation Technology

 26

Semantic Model of Technology

Developer

Set breakpoint

Edit code

Step over

Step into

Variable?

Run

Stop

© Construx Software Builders, Inc. www.construx.com

 27

Semantic Model of Technology (cont)

«actor»
Developer

Class
accessibility
abstract?
final?

Primitive Type

Entity Type
name

Member
name
accessibility
static?

Operation

Statement
keyword type

Variable

Formal Parameter
name
modifier

Implemented by

1..*

1

1

1

*

*

* 1

Extends

Parameterized by

D
eclared to be of type

D
eclared to be of type

0..1

*

Implements

1

*
*

* Refers to

R
efers to

*

*

Code is …

© Construx Software Builders, Inc. www.construx.com

 29

Semantic Models and Code

Semantic model of “business”

Semantic model of technology

public class Account {

 private double balance;
 private BAState state;

 public Account(double amount) {
 balance = amount;
 state = BAState.OPEN;
 }

 public void deposit(double amount) {
 if(state == BAState.OPEN) {
 balance += amount;
 } else {
 throw new AccountNotOpen();
 }
 }

 public boolean withdraw(double amount) {
 …
 }

 public double close() {
 if(state == BAState.OPEN) {
 state = BAState.CLOSED;
 return balance;
 } else {
 throw new AccountNotOpen();
 }
 }

}

 30

Code is a Mapping!

v Code maps semantic model of “business”
onto semantic model of technology

v Must exhibit three properties
u  Sufficiently complete
u  Preserve “business” semantic
u  Satisfy non-functional requirements

* For Model region in MVC. VC region code maps interface definition to technology

*

© Construx Software Builders, Inc. www.construx.com

 31

Boeing 767 ES, 777, 787 ATE

v B-767 Engine Sim ATE
u  C, HP/UX 9
u  Estimated 14 months, took 7

v B-777 ATE
u  C++, HP/UX 10
u  Estimated 30 months, took 15

v B-787 ATE
u  C#.net

Estimated 30 months, took 15

Each ATE project was on the critical path of its respective airplane program

 32

P-8 Poseidon Mission Systems

v  Mission planning & execution, detection, IFF,
weapons & stores management, secure
communications, ...
u  Mixed technologies
u  350 developers, 7 years à 7M LOC
u  On-time, on-budget, few customer complaints

© Construx Software Builders, Inc. www.construx.com

 33

Other Successful Projects

v  Lawrence Livermore National Laboratory
u  Laser isotope separation
u  Vapor rate monitor

v  Los Alamos National Laboratory
u  Solid modeling for computational fluid dynamics (CFD)

v  Boeing
u  Airport traffic capacity discrete event simulation
u  Wichita data center trouble tracking
u  Lofting and visualization for CFD
u  Electronic airplane flight manual proof of concept
u  DCAC / MRM enterprise application integration
u  Flight effects test system
u  ARINC-629 driver replacement for 777 ATE

v  KLA
u  Probe placement subsystem for automated silicon wafer tester

 34

Other Successful Projects (cont)

v  Rockwell-Collins Avionics
u  Multiple mice across multiple screens utility
u  TCP / IP in Java

v  Peopleware
u  Conference management

v  Nordstrom
u  Corporate facilities management

v  Schlumberger
u  Oil well drill placement

v  Multi-national chemical company
u  Cost estimation tool for large-scale chemical processing plants

v  Construx
u  Software engineering economy toolkit
u  JAL Semantic model editor & compiler

© Construx Software Builders, Inc. www.construx.com

And if That’s True …

 36

Regular Mappings = Production Rules

v  “A à B + C”
u  “Type A thing is mapped onto type B thing followed by type C thing”

“package “ #DOMAIN_NAME “;”
“public class “ #CLASS_NAME “ {“
“public enum “ #CLASS_NAME “_states { “ #STATE_ENUM_LIST “ };”
#ATTRIBUTE_INSTVAR_LIST
#CONSTRUCTOR_OPERATION
#PUSHED_EVENT_OPERATION_LIST
#TRANSITION_ACTION_PRIVATE_METHOD_LIST
“}”

#DOMAIN_NAME → (String) aDomain.formattedDomainName()

#CLASS_NAME → (String) aClass.formattedClassName()

#STATE_ENUM_LIST →
 foreach aState in aClass’ state model {
 (String) aState.formattedENUMStateName() + “, “
 }

#ATTRIBUTE_INSTVAR_LIST →
 foreach anAttribute in aClass {
 “private “ +
 (String) PIM_Overlay.runTimeType(anAttribute) + “ “ +
 (String) anAttribute.formattedAttributeName() + “;“
 }

© Construx Software Builders, Inc. www.construx.com

 37

More Production Rules
#PUSHED_EVENTS_OPERATION_LIST →
 foreach anEvent in aClass’ state model {
 “public void “ +
 (String) anEvent.formattedEventName() +
 “(“ + #OPERATION_FORMAL_PARAMETERS + “) {“ +
 #EVENT_METHOD_BODY +
 “}”
 }

#EVENT_METHOD_BODY →
 foreach aTransition triggered by anEvent {
 “if(state == “ +
 (String) aClass.formattedClassName() +
 “_states.” +
 (String) aTransition.formattedStartState() +
 #OPTIONAL_GUARD + “) {“
 #TRANSITION_ACTIONS_LIST +
 if(aTransition.startState() != aTransition.endState()) {
 “state = “ +
 (String) aClass.formattedClassName() +
 “_states.” +
 (String) aTransition.formattedEndState() +
 }
 “}”
 }

#OPTIONAL_GUARD →
 if(aTransition.hasGuard()) {
 “ && “ +
 (String) PIM_Overlay.guardCondition(aTransition.guard())
 }

 38

CIMs, PIMs, PSMs

v  CIM
u  Computation Independent Model
u  Purely “business” semantics, no automation technology

²  Not translate-able to fully executable code

v  PIM
u  Platform Independent Model
u  Sufficient guidance to produce executable code, but generic

enough to be translated into different computing platforms
²  Range à run time type, action contract à algorithm, …

v  PSM
u  Platform Specific Model
u  Targets one technology environment, e.g., Java on single-

user desktop, distributed C#, C++ on mobile device, Ruby on
Rails, Python for cloud, …

Source: Object Management Group, “Model Driven Architecture”

© Construx Software Builders, Inc. www.construx.com

 39

“Open” Model Compiler

Platform
Independent

Model
(PIM)

Generated
Source
Code

Production
Rules

Production
Rule

Interpreter

Semantic
Model
(CIM)

Attribute &
Action Hints

(PIM Overlay)

Frames

Mechanisms

Compiler &
Linker

Executable
Image

}

 40

To the Computer …

 Memory Address Memory Content
000 000 001 000 000 000 000 000
000 010 000 000 111 011 100 000
000 010 000 001 001 010 001 100
000 010 000 010 011 000 010 000
000 010 000 011 001 100 001 000
000 010 000 100 111 100 101 000
000 010 000 101 101 110 001 011
000 010 000 110 110 000 100 110
000 010 000 111 110 000 100 001
000 010 001 000 101 010 000 111
000 010 001 001 111 011 000 000
000 010 001 010 101 010 000 011
000 010 001 011 111 110 000 101
000 010 001 100 000 010 001 101
000 010 001 101 000 011 001 000
000 010 001 110 000 011 000 101
000 010 001 111 000 011 001 100
000 010 010 000 000 011 001 100
000 010 010 001 000 011 001 111
000 010 010 010 000 010 100 000
000 010 010 011 000 011 010 111
000 010 010 100 000 011 001 111
000 010 010 101 000 011 010 010
000 010 010 110 000 011 001 110
000 010 010 111 000 011 000 100
000 010 011 000 000 010 100 001
000 010 011 001 000 000 000 000

à

à Starting memory address

© Construx Software Builders, Inc. www.construx.com

 41

A Huge Improvement

 0010 *10
0010 0000 AINDEX, 0 / AN AUTO-INDEX REGISTER

 0200 *200
0200 7340 START, CLA CLL CMA / SET ACCCUMULATOR REGISTER TO -1
0201 1214 TAD HPNTR / MAKE START ADDRESS OF STRING
0202 3010 DCA AINDEX / PUT THAT INTO AUTO-INDEX REGISTER
0203 1410 NXTCH, TAD I AINDEX / GET THE NEXT CHARACTER
0204 7450 SNA / AT END OF STRING YET?
0205 5613 JMP I OSRETN / YES, RETURN TO OPERATING SYSTEM
0206 6046 TLS / NO, PRINT THIS CHARACTER
0207 6041 TSF
0210 5207 JMP .-1 / WAIT FOR TERMINAL TO FINISH
0211 7300 CLA CLL / CLEAR ACCUMULATOR FOR NEXT CHARACTER
0212 5203 JMP NXTCH / GET THE NEXT CHARACTER
0213 7605 OSRETN, 7605 / OPERATING SYSTEM RE-ENTRY POINT
0214 0215 HPNTR, HELLOW
0215 0310 HELLOW, “H / THE STRING TO PRINT
0216 0305 “E
0217 0314 “L
0220 0314 “L
0221 0317 “O
0222 0240 “ / SPACE CHARACTER
0223 0327 “W
0224 0317 “O
0225 0322 “R
0226 0314 “L
0227 0304 “D
0230 0241 “!
0231 0000 0 / NULL CHARACTER TO TERMINATE
 $

 42

More Huge Improvements

 WRITE (1,100)
100 FORMAT (“HELLO WORLD!”)
 STOP
 END

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!”);
 }
}

© Construx Software Builders, Inc. www.construx.com

 43

Another Huge Improvement

 44

Open Model Compiler: Other Uses

v Derive verification test cases
v Generate formal documentation

u  Including “The system shall …”
v Compute semantic model complexity metrics
v …

© Construx Software Builders, Inc. www.construx.com

 45

Modeling and Development Processes

v Semantic modeling does not require waterfall
u  Compatible with all development processes

v Model-based agile
u  And, iterative processes not yet recognized in agile

 46

Advantages

v  Technology abstraction, decoupling
u  Complete separation of “business” from technical complexity

v  Semantic model correctness à code correctness
u  Completeness criteria + guidelines help avoid requirements defects
u  Model compilation reduces design + construction defects

v  Highly scalable
v  Semantic models highly reusable
v  Complete control over generated code

u  E.g., performance tuning, technology change, platform change, …
v  Rules, frames, mechanisms are write once, reuse many
v  One CIM, many implementations

Quite literally,
“Self-coding documentation”

*

* Most apply even without full, automatic code generation

© Construx Software Builders, Inc. www.construx.com

 47

Ultimate Goal

“… change the nature of programming from a private,
puzzle solving activity to a public, mathematics
based activity of translating specifications into

programs … that can be expected to both run and
do the right thing with little or no debugging”

 48

Disadvantages

v Cost of model editor-compiler
v Effort to customize open model compiler

u  Frames
u  Production rules
u  Mechanisms

v Many production rules may be required
v May be hard to debug generated code
v …

* Most apply to open model compilation, not model-based development in general

*

“That’s not the way we’ve always done it”

© Construx Software Builders, Inc. www.construx.com

 49

Book Outline

v  Part I: Intro and Foundations
u  Introduction
u  Nature of code
u  Fundamental principles
u  Functional and non-functional

requirements
u  UML overview
u  Partitioning into domains

v  Part II: Semantic modeling
u  Use case diagrams
u  Class models
u  Interaction diagrams
u  State models
u  Partitioning into subdomains
u  Wrapping up semantic modeling

v  Part III: Design and code
u  Introduction to design and code
u  Designing interfaces
u  HLD: Classes and operations
u  HLD: Contracts and signatures
u  Detailed design and code

v  Part III: Design and code (cont)
u  Formal disciplines
u  Optimization
u  Model compilation
u  Advanced open model compilation
u  Wrapping up design and code

v  Part IV: Related topics
u  Estimation
u  Development processes
u  Economics of error handling
u  Arguments against MBSE

v  Part V: Summary
u  Closing remarks

v  References
v  Part VI: Appendices

u  Documentation principles
u  WebBooks 2.0 case study
u  Semantics of semantic modeling
u  Sample production rules
u  Structural complexity metrics

THIS is how to engineer software!
 50

Summary

v  Software projects perform poorly
u  Poor requirements, syntax >> semantics, unmanaged complexity, over dependence on

test, code not self-documenting
v  Semantics >> syntax

u  Bug == defect == semantic inconsistency
v  Code automates “business”
v  Can precisely, concisely specify business semantic
v  Can precisely, concisely specify automation technology semantic
v  Code maps business semantic onto automation technology semantic

u  Source of most defects!
v  Mapping can be expressed as production rules

u  Open model compiler interprets production rules
u  Different rules:

²  Executable code for different platforms
²  Executable code with different performance characteristics
²  Verification test cases
²  Formal documentation
²  Semantic model complexity metrics
²  …

© Construx Software Builders, Inc. www.construx.com

 51

Contact Information

v  Seminars
v  Consulting
v  Resources

stevet@construx.com
www.construx.com
+1(425) 636-0100

