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Visual Data

• Visual data: images, videos, and feature vectors

• Visual data is one of the biggest data

• Analytics on video or image data, either off-line or streaming, have 
become prolific across a wide range of application domains [1]. 

– due to the growing ability of machine learning techniques to extract information

• Despite this rich and varied usage environment, there has been very 
little research on the management of visual data [1].

– Ad-hoc collection of tools, unique and individual solutions

– Seeks for new approaches

[ 1] NIPS, 2018
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Why Location with Visual Data?

• Many visual data (images & videos) are naturally tied with 
geographical information  

– Surveillance, traffic, real estate, leisure, to name a few

• To better organize images & videos in large datasets

– Indexing, searching

• Integrate visual data with other information

• Machine learning (spatial visual correlation)

So, tag and utilize the location of image 
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How to Get Location?

• Easier to capture location using GPS-equipped Cameras

- E.g., smartphone, table, digital camera, GoPro

Enable taking photos which are tagged 
with location

Camera GPS

Geo-tagged Image
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Already Lots of Geo-tagged Image Datasets

User-generated Images
– Ubiquity of smartphone users

• Billions of mobile subscriptions 

– Network bandwidth improvements

– Growth of image sharing online services

Urban streets are being documented 
with geo-tagged images & videos

E.g., Flickr collected 200+ million geo-tagged images

E.g., Google Street View Project collected photos for 3000 cities

Professional-generated Images
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Many Applications: e.g., Smart City

Traffic 
Management

Monitoring 
air quality

Street 
Cleanliness

Public Safety 
Solutions

Road Damage 
Detection

Graffiti 
Detection
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Motivation

• State of the art techniques utilize camera location (e.g., GPS input) 
for organizing and searching images/videos

– However, only camera location is not enough

• Location data do not have human viewpoints

– Viewing direction, Distance between camera and object 
(appearance of object), Semantics

• Any methods to potentially help managing visual data at the high 
semantic level preferred by humans?
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Issues to Consider

• More and more visual data are generated

– More amount than human can physically watch →machine watches

• Still, visual data collection is expensive and in adhoc manner

– Size of data, orchestration of collection, timely collection

• Systematic use of visual data is not much available

– Search, index, sharing, annotation, etc.

• Preparation for AI and machine learning is needed

– Machine automatically selects dataset for learning?
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The Question

• For efficient visual data collection, indexing, searching, and 
furthermore diverse image machine learning, how can we 
use geographical properties of visual data?
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GPS

Compass

Latitude/Longitude

Direction

Location Data Collection
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Modeling Viewable Scene of Image

• Accurately describe visual content through field-of-view (FOV) model

Location (lat/lon)

DirectionVisible 
distance
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Extended – Field of View (FOV) Model 

p: camera location
Ԧ𝑑: camera view orientation

α: viewable angle
R: viewable distance

𝑁

α

Ԧ𝑑

p
R

2D FOV Model [2]
Geo-tagged Images (or Video Frames)

Accelerometer

Gyro

Compass

WiFi
Camera

GPS

Time

3D FOV Model [3]

[2] ACM MM, 2008.  [3] MMM, 2020. 
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Meaning of Viewable Scene Models

• What does this mean?

Image/Video as
Spatial objects

Spatial Database
Technologies

New Visual Data
Management Solution

Challenging Video Problem            Known Database Problem
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More Precise Model

Field of View (FOV)

imprecise

Geo-location Point

Spatial Representation

Precise spatial 
representation
Tightly representing 
spatial extent

Scene Location [4]

Better spatial 
representation
Loosely representing 
spatial extent

[4] ACM MM, 2018. 
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Spatial Keywords

• Searching videos using geo-coordinates (figure) is good and effective, 
BUT…

“Is this the best?”
People are already familiar with keyword-based search! 

We have far more information in the virtual world   
-Geographic Information Systems 

Any way to utilize textual keywords?
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Retrieving Spatial Keywords

Geographic Information Systems

Geo-
Coordinates

Spatial
Keywords
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Record video using 
Camera with sensors

Video/Image Analysis
Buildings,
Tommy Trojan

Visual Features & Keywords

Metadata from Visual Analytics
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Visual Data Organization and Indexing 

Tommy Trojan
USC

John

Database Technologies
(hybrid storing and indexing, 
dynamic update, searching, etc.)
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Spatial Coverage Model [4][5]

[4] MMM, 2020. [5] IEEE BigMM, 2018. 
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Basic Question

• When we have thousands of geo-tagged images in an area 
(e.g., Los Angeles downtown), how do we measure how much 
they visually cover the area? 

– Human perception → e.g., direction

– Completeness → how much is enough? (for human and AI)

• How do we identify areas with no visual information? 

– Automatic crowdsourcing data for complete coverage
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Problem Definition

• Given a field-of-view dataset ℱ and a query range 𝑅𝑞, the 

spatial coverage measurement (SCM) problem is formulated as

𝑺𝑪𝑴 ℱ,𝑹𝒒 = 𝝆

• 𝜌 is the geo-awareness percentage of ℱ to the visual space 
located in 𝑅𝑞.
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Baseline: Area Coverage Model (ACM)

• ACM estimates the percentage of the area 𝑅𝑞 covered by ℱ.

ACM does not consider the directional property of ℱ.
ACM(𝑅𝑞, ℱ) = 100%

Visual Perception of 
𝑅𝑞 by ℱ is different!
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Directional Coverage Measurement Model (DCM)

• DCM extends ACM to measure the visibility of the area 𝑅𝑞
from various directions

– Divide Rq into a set of directional sectors.

– Calculate ACM for every sector and then aggregate the result.

Define the maximum circle 𝐶 inscribed 
in 𝑅𝑞 where 𝐶.center = 𝑅𝑞.center.
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Cell Coverage Measurement Model (CCM)

• CCM extends DCM to measure the visibility at a finer 
granularity by dividing 𝑅𝑞 into cells and evaluating the visibility 

of each cell, then aggregate the results. (Algorithm 1 in paper)



3/5/2021 29
29

Experiments with Large Scale Datasets

Range Query (Rq) # of images Area (km2) Avg. # images / km2

Manhattan (MA) 21, 947 13.7 × 7.3 219

Pittsburg (PT) 5, 940 1.5 × 3.6 1, 100

Los Angeles (LA) 36, 624 0.9 × 1.7 23, 459

San Francisco (SF) 409, 862 4.4 × 4.2 22, 429

View Directional Distribution of Large-scale Datasets

Manhattan, 
NY, USA

Pittsburg, 
PA, USA

Los Angeles, 
CA, USA

San Francisco, 
CA, USA

All 4 
directions

well 
distributed 
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ACM, DCM, and CCM with Large Datasets

Overall 
coverage 

depends on 
image density

Images with 
well distributed 

directions

CCM requires 
lots of images

Execution Time
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2D → 3D Spatial Coverage Model
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Efficient Data Collection
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Spatial Crowdsourcing
Server

Computing paradigm where humans are actively enrolled to participate in data collection 
(in our case, visual data w/ locations), especially at a certain location and time.
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Spatial Crowdsourcing

• Continuous Collection 
and Management [6]

• Coverage Measure

• Spatial Visual Model

• Spatial Crowdsourcing

• Customized datasets

• Collaborative utility

Collect Spatial 

Metadata

Spatial Visual 

Modeling

Spatial Coverage 

Measurement

Analyze 

Completeness

Known 

Data Sources

Spatial 

Crowdsourcing

Applications

or Users

Query Region and 

Budget

[6] IEEE BigData, 2015. 
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Access Method
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Conventional Image Search

• Query By Example (QBE)

https://images.google.com/https://yandex.com/images/

Amazon Flow Mobile App
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• Query by Geo-location
Flickr Photo Search API

Instagram Media Search API
www.flickr.com/services/api/flickr.photos.search.html

Conventional Image Search (Cont…)
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Spatial-Visual Search

Query ImageQuery Spatial Range

Spatial-Visual Search: find similar images to a given query image and 
simultaneously within a given geographical area.
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Main Challenges with Spatial-Visual Search

Performance: 

• Searching large volume datasets of geo-tagged images

Accuracy: 

• Curse of dimensionality (high dimensional visual features) 
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Naive Indexes – Double Index (DI)

Poor Performance: Execute query twice and intersect the results

LSH (Locality Sensitive Hashing)R*-tree
Qs Qv

Final Output
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Hybrid Index – Two Level

Outperforms Double index

Performance may suffer due to the bias towards spatial or visual dominance of the primary index

1) Augmented Spatial First Index (Aug SFI) 2) Augmented Visual First Index (Aug VFI)

P
ri

m
ar

y 
In

d
ex

Se
co

n
d

ar
y 

In
d

ex
es
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Observation: Locality of similar visual features of “street” images

High Locality

Locality Analysis Query Image Similar Image Spatial Range

Low Locality 

0

0.2

0.4

0.6

0.8

1

S=200, k=10 S=300, k=10 S=400, k=10 S=500, k=10

(1
-

R
M

SE
)

Orlando Pittsburgh Manhattan USC

USC Neighborhood Manhattan, NY Pittsburgh, PA Orlando, FL

Difference between Visual Similar Images and Geo-visual similar images of 

a query image

Nearby street images are also visually similar

Geo-Visual similar

Visual similar

Locality Analysis 

Radius of Spatial Range (m)  = {200, 300, 400, 500}, Visual Threshold (k)= 10.
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Spatial-Visual Indexes using R*-tree (Baselines)

Organizes the dataset using “only” the 
spatial properties of the images.

Each leaf node is augmented with both 
the spatial vector and visual vector of 
each image.

1) Spatial R*-tree Index (SRI) 2) Visual R*-tree Index (VRI)

Organizes the dataset using “only” the 
visual properties of the images.

Each leaf node is augmented with both 
the spatial vector and visual vector of 
each image.

Nodes are associated with MBR
of (dimension-reduced) visual

properties

Nodes are associated with MBR
of spatial properties

Dimension 
Reduction

CNN Feature 
Extractor

__
__
__
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Hybrid index structure which organizes images using their spatial 
and visual properties [7].

Outperforms baselines

PSV treats the spatial and visual properties of images equally; however, 
these are two different sets of features (might be treated differently)

Hybrid Indexes - Plain Spatial-Visual R*-tree (PSV)

A node is associated with an 
MBR of both spatial and 

(dimension-reduced) visual
properties

[7] ACM MM, 2017. [8] IEEE ICDE, 2020
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Hybrid Indexes: Adaptive Spatial-Visual R*-tree (ASV)

Similar to PSV with the following changes:
– Treat the spatial and visual properties differently by creating spatial MBR and visual 

MBR for each node.

– Modify the underlying insert algorithm to accommodate the new design of each node. 
Hence, the goodness values used in the insert algorithm are modified to consider both 
MBRs. 
• 𝑀𝑎𝑟𝑔𝑖𝑛 = 𝛼 Τ(𝑚𝑎𝑟𝑔𝑖𝑛𝑠𝑝𝑎𝑡𝑖𝑎𝑙) max 𝑚𝑎𝑟𝑔𝑖𝑛𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + 𝛽 Τ𝑚𝑎𝑟𝑔𝑖𝑛𝑣𝑖𝑠𝑢𝑎𝑙 max(𝑚𝑎𝑟𝑔𝑖𝑛𝑣𝑖𝑠𝑢𝑎𝑙)

• 𝐴𝑟𝑒𝑎 = 𝛼 Τ(𝑎𝑟𝑒𝑎𝑠𝑝𝑎𝑡𝑖𝑎𝑙) max 𝑎𝑟𝑒𝑎𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + 𝛽 Τ𝑎𝑟𝑒𝑎𝑣𝑖𝑠𝑢𝑎𝑙 max(𝑎𝑟𝑒𝑎𝑣𝑖𝑠𝑢𝑎𝑙)

• 𝑂𝑣𝑎𝑟𝑙𝑒𝑝 = 𝛼 Τ(𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠𝑝𝑎𝑡𝑖𝑎𝑙) max 𝑎𝑟𝑒𝑎𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + 𝛽 Τ𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑣𝑖𝑠𝑢𝑎𝑙 max(𝑎𝑟𝑒𝑎𝑣𝑖𝑠𝑢𝑎𝑙)

𝛼 = 1, 𝛽 = 0 → 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑅 ∗ −𝑡𝑟𝑒𝑒 𝐼𝑛𝑑𝑒𝑥
𝛼 = 0, 𝛽 = 1 → 𝑉𝑖𝑠𝑢𝑎𝑙 𝑅 ∗ −𝑡𝑟𝑒𝑒 𝐼𝑛𝑑𝑒𝑥

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 → 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 − 𝑉𝑖𝑠𝑢𝑎𝑙 𝐼𝑛𝑑𝑒𝑥



3/5/2021 48
48

Hybrid Indexes: Clustered ASV R*-tree (CSV)
ASV organizes a dataset by considering 
simultaneously the spatial and visual sub-
division for the global area.

The visual MBR in a node can loosely represent the 
contained images.

After ASV is constructed, for each node we can 
cluster the contained images (using k-means) 
and create a set of visual MBRs.

While searching the tree, for each node
– The Spatial MBR is used to prune the search space of 

a query spatially.

– The bundle of Visual MBRs are used for pruning the 
search space of a query visually.

Page 483/5/2021
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Experiments -- Geo-tagged Image Datasets

Dataset # of images Size of Spatial 
Descriptors (MB)

Size of Visual 
Descriptors (MB)

Spatial Region
(W * H) (km2)

Spatial Density
(# of images per km2)

OR 3,204 1 20 2.1 * 1.2 1,271

PT 4,825 1 30 1.5 * 3.6 893

MA 17,825 2 106 13.7 * 7.3 178

LA 24,345 3 140 1.4 * 1.0 17,398

SF 520,623 51 3,607 6.0 * 8.1 10,712

Pittsburgh Downtown ManhattanOrlando Downtown

Orlando Downtown

Pittsburgh Downtown

Manhattan

USC

San Francisco

LA (USC)
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Baseline vs. Hybrid

Efficiency Effectiveness

With respect to SRI, the speedup factor of PSV, ASV, and CSV 
reached up to 1.2x, 1.6x, and 1.8x.

With respect to SRI, the speedup factor of PSV, ASV, and CSV 
reached up to 2.1x, 4.8x, and 5.6x.

Using MA

Using LA

Spatially DenseSpatially Sparse

SRI achieves a perfect recall score

Among Hybrid, recall of ASV and CSV is better than PSV
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Scalability: Evaluation on a large-scale dataset

Efficiency Effectiveness

With respect to SRI, the speedup factor of ASV, and CSV reached 
up to 18x and 25x, respectively.
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Filtering for Computer Vision Applications
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Geospatial Image and Video Filtering Tool (GIFT) [8] 

Video 
Analytics

Queries

Images / videos 
with metadata

➢An efficient tool to organize, index and search spatio-temporal image/video data.
➢A fast way to select related image/video frames according to user demands.

GIFT

Less resources
Faster processing
No lower quality 

[8] MMC at IEEE ICME, 2015.
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Automatic Generation of Panoramic Images
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Panorama Problem

Point panorama                     Route panorama

Small number of well selected input images would be fine!

How to automatically select the minimum number of image 
frames for panorama generation?
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Example: Point Panorama Results [9]

BA-P: Selected FOV# = 228, Video #= 3, Stitching time = 148.5 seconds

DA-P: Selected FOV# = 17, Video #= 2, Stitching time = 8.51seconds

DLA-P: Selected FOV# = 13, Video #= 3, Stitching time = 8.65seconds

[9] W2GIS, 2014
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1
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Automatic Generation of 3D Models [10]

[10] IEEE ICME, 2014.
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Image Machine Learning 
with Edge Computing
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Image Machine Learning Example

• In collaboration with the Sanitation Department of Los 
Angeles, monitor LA streets for cleanliness using images.

• Currently, data are manually collected and evaluated: 
inefficient, costly →automate!

• Goal: automatically detect the cleanliness of streets as well as 
any special objects in need of removal. 
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Image Classification of Street Cleanliness 

20K+ Images collected by the Sanitation Department, City of Los Angeles
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Image Based Classifier

[11] IEEE Big Multimedia, 2018

• Achieved 80 – 90% accuracy (depending on class): stable and practical

• The more images in an area, the higher the accuracy becomes: promising
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Global vs. Local Classifier 

• Global Classification Scheme (GCS)

– This approach constructs one single trained model that learns the image features 
throughout the overall geographical region in a dataset.

– Street scenes have visual differences across geographical regions → Classification 
accuracy decreases

• Geo-spatial Local Classification Scheme (LCS)

– Utilizing the geo-properties tagged with the images

– Partition the overall geographical area into sub-regions using Grid or Bucket 
Quadtree.

– For every sub-region, construct a local trained model.
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Global vs. Local Classifier 

Smaller Cell → Higher Score

How about supporting city scale image learning? → Not a centralized system
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Edge Computing

• Train machine learning models 
on the server (initial model)

• Distribute the models to edge 
devices (e.g., smartphones, 
smart cameras)

• Inference happens on edge 
devices using CPU on edge

• Report selected results to 
involved agencies

• Improve models iteratively

Framework to train, distribute and adapt models

[12] IEEE BigMM, Sep. 2019 
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Image Learning with Edge Devices

• Provide various model “flavors” of the same classification task

– Choose the one that fits the application requirements and device 
capabilities → Resource based model building and dissemination

• Save bandwidth by reducing the amount of transmitted data

– Resize image: smaller size of original image

– Extract visual feature vectors on device and transfer 

• Improve model by selecting images for retraining at new locations and 
time periods



3/5/2021 67
67

Experiments

• Show the trade-off between inference accuracy and the resource constraints of the 
edge devices

– models can be tuned to support wide classes of edge devices

• Three classes of edge devices
Device Class CPU GPU Memory

Raspberry Pi 3B+ Low
Broadcom BCM2837B0 quad-

core A53 (ARMv8) 
64-bit @ 1.4 GHz

Broadcom VideoCore IV 1GB LPDDR2 SDRAM

Google Pixel 3 Medium
Qualcomm Snapdragon 845 8x 

Qualcomm® Kryo™ 385 CPU
64-bit @ 2.8 GHz

Qualcomm® Adreno™ 630 GPU 4GB

Desktop High
56 (Intel(R) Xeon(R) Gold 5120 

CPU @ 2.20GHz
2 Tesla P100-SXM2-16GB 187 GB
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Experiments
• Datasets:

– DSC geotagged labeled LASAN image collection for cleanliness classification 

• 42,331 images with 5 labels: 14,495 bulky items, 7,120 illegal dumping, 7,007 
encampment, 6,982 overgrown vegetation, and 6,727 clean

– DCAL256: Caltech 256 

• 30,608 images with 256 labels, with a minimum of 80 images per label and 
119 on average

• Three pre-trained models: 

– Inception V3, MobileNet V1, and MobileNet V2

– Used transfer learning
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Inference Time vs Model

• Raspberry Pi is 1.5x order of magnitude slower compared to desktop 
class devices

Image size
Width multiplier
Model

Log scale



3/5/2021 70
70

Feature Size vs Accuracy

• Usually, the larger the size of the VFVs, the higher the accuracy

– they carry a more detailed summary of the image
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Location-based Feature Selection

• Under-represented regions significantly affect the accuracy
– Sometimes with almost 15% drop of accuracy

• M1: Excluded images from 
Downtown LA

• M2: Includes 50% of images from 
Downtown LA

• Accuracy tested on 50% images of 
unseen data in Downtown LA
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Conclusion

• Provide an overview of 1) modeling spatial properties of visual data, and 
2) various ways to harness spatial properties in visual data management 
and machine learning with examples.

• Spatial metadata are getting more important in many visual data 
applications including image machine learning.

• Proper consideration of spatial metadata would be useful in many visual 
data applications, especially where geographical information is critical.
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