Profile Headshot

Mohsen Dadfarnia, PhD

Associate Teaching Professor

Biography

Research Interests - Mechanics of materials, material modeling, computational mechanics, hydrogen embrittlement, and environmental degradation.

Courses Taught

  • MEGR 2810 - Engineering Methods
  • MEGR 3710 - Machine Design I
  • MEGR 4720 - Machine Design II
  • MEGR 5055 - Advanced Computational Methods

Publications

  • Vijayvargia, K., Dadfarnia, M., Bassani, J.L., Sofronis, P., 2025, "Toward a Fracture Mechanics Based Prediction of Failure Under High Temperature Hydrogen Attack," International Journal of Hydrogen Energy, 136, pp. 713-721.
  • Hosseini Z.S., Dadfarnia, M., Kubota, M., Nagao, A., Somerday, B.P., Sofronis, P., Ritchie, R.O., 2025, “Mechanistic Model for Hydrogen Accelerated Fatigue Crack Growth in a Low Carbon Steel,” International Journal of Hydrogen Energy, 136, pp. 722-730.
  • Vijayvargia, K., Nguyen, T., Dadfarnia, M., Staykov, A., Sofronis, P., Kubota, M., Martin, M.L., Pugh, J.A., 2025, "On the chemomechanics of bubble growth in hydrogen attack of plain carbon steels," Corrosion Science, 253(2), pp. 112999.
  • Vijayvargia, K., Dadfarnia, M., Sofronis, P., Kubota, M., Staykov, A., Wada, K., Pugh, J.A., Eason, T.J., 2023, "Three-dimensional Constraint-based Void-growth Model for High Temperature Hydrogen Attack," International Journal of Fracture 243(2), pp. 203-228.
  • Sanders, J.W., Jamshidi, Ni., Jamshidi, Ne., Dadfarnia, M., Subramanian, S., Sehitoglu, H., Stubbins, J., Sofronis, P., 2022, “Effects of Diffusion and Primary Creep on Intergranular Cavitation at High Temperatures,” International Journal of Fracture 236(2), pp. 125-141.
  • Takazaki, D., Tsuchiyama, T., Komoda, R., Dadfarnia, M., Somerday, B.P., Sofronis, P., Kubota, M., 2021, “Effect of Hydrogen on Creep Properties of SUS304 Austenitic Stainless Steel,” Corrosion 77(3), pp. 256-265.
  • Hosseini Z.S., Dadfarnia, M., Nagao, A., Kubota, M., Somerday, B.P., Ritchie, R.O., Sofronis, P., 2021, “Modeling the hydrogen effect on the constitutive response of a low carbon steel in cyclic loading,” ASME Journal of Applied Mechanics 88(3), pp. 031001:1-14.
  • Sanders, J.W., Dadfarnia, M., Sehitoglu, H., Stubbins, J., Sofronis, P., 2020, “On the Stress Field Ahead of a Stationary Crack Tip During the Transition from Primary to Secondary Creep,” International Journal of Solids and Structures, 193-194, pp. 455-473.
  • Dadfarnia, M., Martin, M.L., Moore, D.E., Orwig, S.E., Sofronis, P., 2019, “A Model for High Temperature Hydrogen Attack in Carbon Steels under Constrained Void Growth,” International Journal of Fracture, 219, pp. 1-17.
  • Dadfarnia, M., Sofronis, P., Brouwer, J., Sosa, S., 2019, “Assessment of the Resistance of Natural Gas Line Pipe Steels to Hydrogen Embrittlement,” International Journal of Hydrogen Energy, 44(21), pp.10808-10822.
  • Martin, M.L., Dadfarnia, M., Nagao, A., Wang, S., Sofronis, P., 2019, “Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials,” Acta Materialia, 165, pp. 734-750.
  • Hosseini, Z.S., Dadfarnia, M., Somerday, B.P., Sofronis, P., Ritchie, R.O., 2018, “On the Theoretical Modeling of Fatigue Crack Growth,” Journal of the Mechanics and Physics of Solids, 121, pp. 341-362.)
  • Nagao, A., Dadfarnia, M., Somerday, B.P., Sofronis, P., and Ritchie, R.O., 2018, “Hydrogen-Enhanced-Plasticity Mediated Decohesion for Hydrogen-Induced Intergranular and ‘Quasi-Cleavage’ Fracture of Lath Martensitic Steels,” Journal of the Mechanics and Physics of Solids, 112, pp. 403-430.